Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Public Health ; 10: 846115, 2022.
Article in English | MEDLINE | ID: covidwho-1753422

ABSTRACT

In December 2019, a novel coronavirus emerged in Wuhan, China, rapidly spreading into a global pandemic. Italy was the first European country to experience SARS-CoV-2 epidemic, and one of the most severely affected during the first wave of diffusion. In contrast to the general restriction of people movements in Europe, the number of migrants arriving at Italian borders via the Mediterranean Sea route in the summer of 2020 had increased dramatically, representing a possible, uncontrolled source for the introduction of novel SARS-CoV-2 variants. Importantly, most of the migrants came from African countries showing limited SARS-CoV-2 epidemiological surveillance. In this study, we characterized the SARS-CoV-2 genome isolated from an asymptomatic migrant arrived in Sardinia via the Mediterranean route in September 2020, in comparison with SARS-CoV-2 isolates arrived in Sicily through the Libyan migration route; with SARS-CoV-2 isolates circulating in Sardinia during 2020; and with viral genomes reported in African countries during the same summer. Results showed that our sequence is not phylogenetically related to isolates from migrants arriving in Sicily, nor to isolates circulating in Sardinia territory, having greater similarity to SARS-CoV-2 genomes reported in countries known for being sites of migrant embarkation to Italy. This is in line with the hypothesis that most SARS-CoV-2 infections among migrants have been acquired prior to embarking to Italy, possibly during the travel to or the stay in crowded Libyan immigrant camps. Overall, these observations underline the importance of dedicated SARS-CoV-2 surveillance of migrants arriving in Italy and in Europe through the Mediterranean routes.


Subject(s)
COVID-19 , Transients and Migrants , COVID-19/epidemiology , Genomics , Humans , Mediterranean Sea , SARS-CoV-2/genetics
2.
J Infect Dev Ctries ; 15(11): 1640-1645, 2021 11 30.
Article in English | MEDLINE | ID: covidwho-1572709

ABSTRACT

INTRODUCTION: To analyze the virus spread among Sassari Hospital staff in the first Covid-19 wave and the impact of the Swab Team, a multidisciplinary task force entitled of nasopharyngeal swab collection and testing. METHODOLOGY: Nasopharyngeal swabs from HCWs between March 6 and May 28 2020 are evaluated. RESULTS: 4919 SARS-CoV-2 tests were performed on 3521 operators. Nurses and doctors are the categories at highest risk. After the Swab Team institution, the average number of swabs raised from 47/day to 86/day (p = 0.007). Positive samples decreased from 18.6% to 1.7% (p < 0.0001). CONCLUSIONS: The Swab Team is effective in increasing the cases tested and in reducing the reporting time. Procedure standardization reduces the risk for all the subjects involved (no transmission among swab team members, nor during the sample collection).


Subject(s)
COVID-19/prevention & control , Medical Staff, Hospital , Occupational Diseases/prevention & control , Patient Care Team , SARS-CoV-2 , Specimen Handling , Adult , COVID-19/diagnosis , COVID-19/epidemiology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , Retrospective Studies
3.
J Infect Dev Ctries ; 15(2): 242-246, 2021 03 07.
Article in English | MEDLINE | ID: covidwho-1125809

ABSTRACT

The spread of new SARS-CoV-2 variants represents a serious threat worldwide, thus rapid and cost-effective methods are required for their identification. Since November 2020, the TaqPath COVID-19 assay (Thermo Fisher Scientific) has been used to identify viral strains of the new lineage B.1.1.7, since it fails to detect the S-gene with the ∆69/70 deletion. Here, we proposed S-gene mutations screening with the Allplex SARS-CoV-2 assay (Seegene), another widely used RT-PCR test that targets Sarbecovirus E, SARS-CoV-2 N, and RdRp/S genes. Accordingly, we evaluated the S gene amplification curve pattern compared to those of the other genes. Exploiting an Allplex assay-generated dataset, we screened 663 RT-PCR digital records, including all SARS-CoV-2 respiratory samples tested in our laboratory with the Allplex assay between January 1st and February 25th, 2021. This approach enabled us to detect 64 samples with peculiar non-sigmoidal amplification curves. Sequencing a selected group of 4 RNA viral genomes demonstrated that those curves were associated with B.1.1.7 variant strains. Our results strongly suggest that B.1.1.7 variant spread has begun in this area at least since January and imply the potential of these analytical methods to track and characterize the spread of B.1.1.7 strains in those areas where Allplex SARS-CoV-2 datasets have been previously recorded.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Gene Amplification , High-Throughput Nucleotide Sequencing , Humans , Italy/epidemiology , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL